II B.Tech - I Semester – Regular Examinations – MARCH 2021

NETWORK THEORY AND ANALYSIS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART - A

- 1. a) Find the average value of a cosine wave.
 - b) Derive time constant in R-L circuit.
 - c) Explain Maximum power transfer theorem.
 - d) Define bandwidth and quality factor.
 - e) Express h-parameters in terms of Z-parameters.

PART – B

<u>UNIT – I</u>

- 2. a) A sine wave generator supplies a 500 Hz, 10 V, RMS 6 M signal to a 2 KΩ resistor in series with a 0.1 µF capacitor. Determine the total impedance Z and current I.
 - b) A sinusoidal voltage v=50 sin ω t is applied to a series 6 M RL circuit. The current in the circuit is given by i=25 sin (ω t-53°).Determine apparent power, average power and power factor.

- 3. a) A sine wave generator supplies a 50 Hz, 50 V, RMS 6 M signal to a series RLC circuit with 10 Ω resistor,10 μ F capacitor and 0.5 H inductor. Determine the total impedance Z and current I.
 - b) Develop the phase relation between applied voltage and 6 M current for series RC excited by sinusoidal voltage and obtain the impedance.

<u>UNIT – II</u>

4. a) If the inductor of Figure below has a current $i_L = 2$ A at 4 M t =0, find an expression for $i_L(t)$ valid for t > 0, and its value at t =200 µs.

b) For the circuit of Figure below, find the value of 8 M (i) i_L;

(ii) i₁;

(iii) i_2 . at t=0.15s.

5. a) The switch in the circuit in Figure below has been 6 M closed for a long time, and it is opened at t = 0. Find v(t) for $t \ge 0$. Calculate the initial energy stored in the capacitor.

b) A series RC circuit is excited by DC voltage. Evaluate 6 M the expression for i(t) when the switch is closed at t=0 and plot i(t) vs. 't'.

UNIT-III

6. a) Use source transformation to find V_o in the following 6 M circuit.

b) Compute the voltage across each resistor in the 6 M following figure.

OR

7. a) Find the Thevenin's equivalent at terminals a-b of the 6 M circuit.

b) Find the maximum power that can be delivered to the 6 M resistor R in the circuit below

$\underline{UNIT} - IV$

- 8. a) Design a series RLC circuit that will have an 6 M impedance of 10 Ω at the resonant frequency of $\omega_o = 50$ rad/s and a quality factor of 80. Find the bandwidth.
 - b) Calculate the resonant frequency of the circuit in Figure 6 M below.

- 9. a) A series RLC network has $R = 2 k\Omega \&$, L = 40 mH, and 6 M $C = 1 \mu F$. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.
 - b) A parallel resonant circuit with quality factor 120 has a 6 M resonant frequency of 6×10^6 rad/s. Calculate the bandwidth and half-power frequencies.

$\underline{UNIT} - \underline{V}$

10. a) Obtain a complete set of Y parameters to describe the 6 M two-port network as shown below.

b) Obtain a complete set of h parameters which describe 6 M the two-port network as shown below.

OR

11. a) Find the Z-Parameters for the below two port network. 4 M

b) Find the ABCD-Parameters for the below two port 8 M network.

