II B.Tech - I Semester - Regular Examinations - MARCH 2021

NETWORK THEORY AND ANALYSIS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Find the average value of a cosine wave.
b) Derive time constant in R-L circuit.
c) Explain Maximum power transfer theorem.
d) Define bandwidth and quality factor.
e) Express h-parameters in terms of Z-parameters.

PART - B

UNIT - I

2.

a) A sine wave generator supplies a $500 \mathrm{~Hz}, 10 \mathrm{~V}$, RMS signal to a $2 \mathrm{~K} \Omega$ resistor in series with a $0.1 \mu \mathrm{~F}$ capacitor. Determine the total impedance Z and current I.
b) A sinusoidal voltage $\mathrm{v}=50$ sin $\omega \mathrm{t}$ is applied to a series RL circuit. The current in the circuit is given by $\mathrm{i}=25$ $\sin \left(\omega t-53^{\circ}\right)$.Determine apparent power, average power and power factor.

OR

3.

a) A sine wave generator supplies a $50 \mathrm{~Hz}, 50 \mathrm{~V}$, RMS 6 M signal to a series RLC circuit with 10Ω resistor, $10 \mu \mathrm{~F}$ capacitor and 0.5 H inductor. Determine the total impedance Z and current I .
b) Develop the phase relation between applied voltage and current for series RC excited by sinusoidal voltage and obtain the impedance.

UNIT - II

4. a) If the inductor of Figure below has a current $\mathrm{i}_{\mathrm{L}}=2 \mathrm{~A}$ at 4 M $t=0$, find an expression for $i_{L}(t)$ valid for $t>0$, and its value at $\mathrm{t}=200 \mu \mathrm{~s}$.

b) For the circuit of Figure below, find the value of
(i) i_{L};
(ii) i_{1};
(iii) i_{2}. at $t=0.15 \mathrm{~s}$.

5. a) The switch in the circuit in Figure below has been 6 M closed for a long time, and it is opened at $\mathrm{t}=0$. Find $v(t)$ for $t \geq 0$. Calculate the initial energy stored in the capacitor.

b) A series RC circuit is excited by DC voltage. Evaluate the expression for $\mathrm{i}(\mathrm{t})$ when the switch is closed at $\mathrm{t}=0$ and plot $\mathrm{i}(\mathrm{t})$ vs. ' t '.

UNIT-III

6. a) Use source transformation to find V_{o} in the following 6 M circuit.

b) Compute the voltage across each resistor in the 6 M following figure.

OR

7. a) Find the Thevenin's equivalent at terminals a-b of the circuit.

b) Find the maximum power that can be delivered to the 6 M resistor R in the circuit below

UNIT - IV

8. a) Design a series RLC circuit that will have an 6 M impedance of 10Ω at the resonant frequency of $\omega_{\mathrm{o}}=50 \mathrm{rad} / \mathrm{s}$ and a quality factor of 80 . Find the bandwidth.
b) Calculate the resonant frequency of the circuit in Figure 6 M below.

OR

9. a) A series RLC network has $\mathrm{R}=2 \mathrm{k} \Omega \&, \mathrm{~L}=40 \mathrm{mH}$, and $\mathrm{C}=1 \mu \mathrm{~F}$. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.
b) A parallel resonant circuit with quality factor 120 has a resonant frequency of $6 \times 10^{6} \mathrm{rad} / \mathrm{s}$. Calculate the bandwidth and half-power frequencies.

UNIT - V

10. a) Obtain a complete set of Y parameters to describe the two-port network as shown below.

b) Obtain a complete set of h parameters which describe 6 M the two-port network as shown below.

OR
11. a) Find the Z-Parameters for the below two port network. 4 M

b) Find the ABCD-Parameters for the below two port 8 M network.

